45 research outputs found

    Sequence variation in ligand binding sites in proteins

    Get PDF
    BACKGROUND: The recent explosion in the availability of complete genome sequences has led to the cataloging of tens of thousands of new proteins and putative proteins. Many of these proteins can be structurally or functionally categorized from sequence conservation alone. In contrast, little attention has been given to the meaning of poorly-conserved sites in families of proteins, which are typically assumed to be of little structural or functional importance. RESULTS: Recently, using statistical free energy analysis of tetratricopeptide repeat (TPR) domains, we observed that positions in contact with peptide ligands are more variable than surface positions in general. Here we show that statistical analysis of TPRs, ankyrin repeats, Cys(2)His(2 )zinc fingers and PDZ domains accurately identifies specificity-determining positions by their sequence variation. Sequence variation is measured as deviation from a neutral reference state, and we present probabilistic and information theory formalisms that improve upon recently suggested methods such as statistical free energies and sequence entropies. CONCLUSION: Sequence variation has been used to identify functionally-important residues in four selected protein families. With TPRs and ankyrin repeats, protein families that bind highly diverse ligands, the effect is so pronounced that sequence "hypervariation" alone can be used to predict ligand binding sites

    Fe-EDTA-Bisamide and Fe-ADR-925, The Iron-Bound Hydrolysis Product of the Cardioprotective Agent Dexrazoxane, Cleave DNA Via the Hydroxyl Radical

    Get PDF
    Use of the antitumor drug doxorubicin is limited by cardiomyopathic side-effects which are believed to be due to iron-mediated hydroxyl radical generation. Dexrazoxane reduces this cardiotoxicity, possibly by removal of iron from doxorubicin by the EDTA-like hydrolysis product of dexrazoxane, ADR-925. However, EDTA-diimides like dexrazoxane, previously used as antitumor agents, are themselves carcinogenic, and recent studies have found that Fe-ADR-925 can also promote hydroxyl radical production. This study demonstrates that, like Fe-EDTA, Fe-ADR-925 and a related desmethyl complex can cleave plasmid DNA under Fenton conditions, and suggests by radical scavenger study that this cleavage is probably via the hydroxyl radical. Differences in DNA cleavage dependence upon concentrations of Fe-EDTA, Fe-ADR-925 and Fe-EDTA-bisamide can be explained by differences in the solution chemistry of the complexes

    Addressing the unmet need for visualizing Conditional Random Fields in Biological Data

    Get PDF
    Background: The biological world is replete with phenomena that appear to be ideally modeled and analyzed by one archetypal statistical framework - the Graphical Probabilistic Model (GPM). The structure of GPMs is a uniquely good match for biological problems that range from aligning sequences to modeling the genome-to-phenome relationship. The fundamental questions that GPMs address involve making decisions based on a complex web of interacting factors. Unfortunately, while GPMs ideally fit many questions in biology, they are not an easy solution to apply. Building a GPM is not a simple task for an end user. Moreover, applying GPMs is also impeded by the insidious fact that the complex web of interacting factors inherent to a problem might be easy to define and also intractable to compute upon. Discussion: We propose that the visualization sciences can contribute to many domains of the bio-sciences, by developing tools to address archetypal representation and user interaction issues in GPMs, and in particular a variety of GPM called a Conditional Random Field(CRF). CRFs bring additional power, and additional complexity, because the CRF dependency network can be conditioned on the query data. Conclusions: In this manuscript we examine the shared features of several biological problems that are amenable to modeling with CRFs, highlight the challenges that existing visualization and visual analytics paradigms induce for these data, and document an experimental solution called StickWRLD which, while leaving room for improvement, has been successfully applied in several biological research projects.Comment: BioVis 2014 conferenc

    Solubilization and Humanization of Paraoxonase-1

    Get PDF
    Paraoxonase-1 (PON1) is a serum protein, the activity of which is related to susceptibility to cardiovascular disease and intoxication by organophosphorus (OP) compounds. It may also be involved in innate immunity, and it is a possible lead molecule in the development of a catalytic bioscavenger of OP pesticides and nerve agents. Human PON1 expressed in E. coli is mostly found in the insoluble fraction, which motivated the engineering of soluble variants, such as G2E6, with more than 50 mutations from huPON1. We examined the effect on the solubility, activity, and stability of three sets of mutations designed to solubilize huPON1 with fewer overall changes: deletion of the N-terminal leader, polar mutations in the putative HDL binding site, and selection of the subset of residues that became more polar in going from huPON1 to G2E6. All three sets of mutations increase the solubility of huPON1; the HDL-binding mutant has the largest effect on solubility, but it also decreases the activity and stability the most. Based on the G2E6 polar mutations, we “humanized” an engineered variant of PON1 with high activity against cyclosarin (GF) and found that it was still very active against GF with much greater similarity to the human sequence
    corecore